

Acuicultura

Temario de curso

Adscripción	
Programa de posgrado	Acuicultura
Orientación	N/A
Fecha de registro en el DSE	

Información del curso							
Nombre del curso							
Diseño de sistemas cerrados de alta densidad en acuicultura							
Periodo lectivo		Tipo					
Cuatrimestre III (agosto-diciembre)		Optativo					
Cursos previos							
Haber cursado Diseño de Sistemas de Recirculación							
Créditos	Horas de teoría	Horas de laboratorio					
6	32	32					
Elaborado por							
Dr. Manuel A. Segovia Quintero							
Aprobado en reunión de Consejo de Programa de Posgrado (CPP)							
13/07/2010							

Objetivos generales

Proporcionar al estudiante las herramientas para diseñar, construir y operar un sistema de recirculación de lato rendimiento con todas sus operaciones unitarias.

Contenido temático

1. Filtración biológica (4 Hrs.)

- 1.1 Configuraciones de biofiltros y las variables que afectan su desempeño
- 1.2 Consideraciones físicas, químicas y mecánicas inherentes al diseño
- 1.3 Manejo de la filtración biológica
- 1.4 Teoría y diseño, construcción y evaluación de biofiltros de bajo costo en forma expandida y expandible
- 1.5 La denitrificación

Hora de teoría:

Horas de laboratorio:

2. Oxigeno, dióxido de carbono y pH (8 Hrs.)

- 2.1 Teoría de la oxigenación y de la desgasificación
- 2.2 Control de dióxido de carbono y pH
- 2.3 Teoría y diseño de oxigenadores de bajo costo
- 2.4 Teoría y diseño de degasificadores de bajo costo

Hora de teoría:

Horas de laboratorio:

Dirección de Estudios de Posgrado*Departamento de Servicios Escolares

Acuicultura

3. Manejo de sólidos suspendidos totales (6 Hrs)

- 3.1 Descripción y caracterización de procesos de remoción de sólidos
- 3.2 Balance de masa y manejo de sólidos en un sistema de recirculación acuícola
- 3.3 Teoría y diseño de hidrociclones de bajo costo
- 3.4 Teoría y diseño de fraccionadores de espuma de bajo costo

Hora de teoría:

Horas de laboratorio:

4. El sistema de recirculación (6 Hrs.)

- 4.1 Ventajas y desventajas de sistemas de recirculación
- 4.1 Modelos teóricos para el diseño y construcción de sistemas de recirculación
- 4.2 Operación y administración de un sistema de recirculación
- 4.3 Control ambiental del laboratorio de producción (transferencia de calor y manejo/control de la calidad del aire)

Hora de teoría:

Horas de laboratorio:

5. Manejo sanitario de los organismos acuáticos en un sistema de recirculación (4 Hrs.)

- 5.1 Bioseguridad y buenas prácticas de sanidad
- 5.2 Monitoreo y control
- 5.3 Agentes terapéuticos y calculo de tratamientos

Hora de teoría:

Horas de laboratorio:

6. Aquaponia 4

Sesión 1	Construcción y	valuación de biofiltros de bajo costo en forma expandida y
	expandible	(5 Hrs.)

Soción 2	Construcción v	avaluación da	ovigonadoros	do baio costo	(5 Hrs.)
Sesión 2	Construcción v	evaluación de	Oxigenadores	de baio costo	ו.אום כו

Sesión 3 Construcción y evaluación de degasificadores de bajo costo (6 Hrs.)

Sesión 4 Construcción y evaluación de hidrociclones de bajo costo (5 Hrs.)

Sesión 5 Construcción y evaluación de fraccionadores de espuma de bajo costo (5 Hrs.)

Sesión 6 Construcción de un sistema de recirculación (6 Hrs.)

Hora de teoría:

Horas de laboratorio:

Bibliografía

- 1. Golz, J.W., Rusch, K.A. y Malone, R.F., 1999. MOdeling the major limitations on nitrification in floating bed filtres. Aquacultural Engineering 20:43-61.
- 2. Hagopian, D.S. y Riley, J.G., 1998. A closer look at the bacteriology of nitrification. Aquacultural Engineering 18: 223-244.
- 3. Losordo, T.M. y Westerman, P. 1991. An analysis of biological, econimic, and engineering factors affecting the costo of fish production in recirculating aquacultural systems. Design of high-density recirculating aquaculture systems. Workshop Proceedings. pp 1-9.
- 4. Malone, R.F. y Coffin, D.E., 1991. Biofiltration and solids capture with low density bead filters. Design of high-density recirculating aquaculture systems. Workshop Proceedings.pp 1-9.
- 5. Malone, R.F., Rusch, K.A.y Burden, D.G., 1990. Kemp's ridley sea turtle waste characterization study: Precursor to a recirculating holding system design. World Aquaculture Society,

Dirección de Estudios de Posgrado*Departamento de Servicios Escolares

Acuicultura

21(2):137-144.

- 6. Menasveta, P., Panritdam, T., Sihanonth, P., Powtongsook, B.C. y Lee, P., 2001. Design and function of a closed, recirculating seawater system wit Denitrification for the culture of black tiger shrimp broodstock. Aquacultural Engineering 25:35-49.
- 7. Palacios, G.L. y Timmons, M.B., 2001. Determining design parameters for recovery of Aquaculture wastewater using sand filtres. Aquacultural Engineering 24: 289-299.
- 8. Patterson, r. M., Watts, K.C. y Gill, T.A., 2003. Micro-particles in recirculating aquaculture systems: determination of particle density by density gradient centrifugation. Aquaculturan Engineering 27: 105-115.
- 9. Pfeiffer, T.J. y Rusch, K.A., 2000. An intergrated system for microalgal and nursery seed clam culture. Aquacultural Engineering 24: 15-31.
- 10. Shnel, N., Barak, Y., Tamir, E., Dafni, Z. y Van Rijn, J., 2002. Design and performance of a zerodischarge tilapia recirculating systems. Aquacultural Engineering 25: 191-203.
- 11. Thorman, E.S., Ingall, E.D., Davis, D.A. y Arnold, C.R., 2001. A nitrogen budget for a closed recirculating mariculture system. Aquacultural Engineering 24: 195-211.